compound was obtained as deep red needles. The corresponding sulfur compound is light brown. The seleno-ether does not melt up to 300°.

Anal. Calcd.: Se, 18.19. Found: 18.49, 18.22.

Summary

The following new compounds have been prepared: 2,2-bis(seleno-ethyl)propane, $(CH_3)_2C(SeC_2H_5)_2$, 2,2-bis(seleno-ethyl)butane, $CH_3(C_2H_5)-C(SeC_2H_5)_2$, 3,3-bis(seleno-ethyl)pentane, $(C_2H_5)_2C(SeC_2H_5)_2$, ethyl seleninic acid hydronitrate, $C_2H_5SeO_2H \cdot HNO_3$, ethyl selenium tribromide, $C_2H_5SeBr_3$, bis(β -ethyl-selenomercapto-ethyl)sulfide, $(C_2H_5SeCH_2CH_2)_2S$, bis(β -ethyl-selenomercapto-ethyl)sulfoxide, $(C_2H_5SeCH_2CH_2)_2SO$, bis(β -ethyl-selenomercapto-ethyl)sulfoxide, $(C_2H_5SeCH_2CH_2)_2SO$, bis(β -ethyl-selenomercapto-ethyl)sulfoxide, $(C_2H_5SeCH_2CH_2)_2SO_2$, anthraquinone 1-butylsulfone-5-ethyl selenide, 1,5- $C_2H_5SeC_{14}H_6O_2\cdot SO_2C_4H_9$.

BALTIMORE, MARYLAND

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF JOHNS HOPKINS UNIVERSITY] THE INFLUENCE OF SULFUR ON THE COLOR OF AZO DYES. FURTHER INVESTIGATION

> By G. D. PALMER¹ AND E. EMMET REID Received November 18, 1925 Published February 5, 1926

In previous papers from this Laboratory,² the influence of sulfur in the para and ortho positions has been studied, and the position of the sulfur has been found to have marked influence. This suggested the investigation of the effect of sulfur in the meta position. In all three series, the four groups -CH3, -OCH3, -SCH3 and -SO2CH3 have been contrasted. The first line of attack was to couple diazotized bases with o-cresol, guaiacol and o-methylmercaptophenol assuming that the coupling would take place para to the hydroxyl and hence meta to the other substituent, so that dyes would be obtained with the desired groups in the meta position. Diazotized sulfanilic acid did not couple satisfactorily with these phenols.³ Naphthionic and gamma acids were diazotized and coupled with them and dves were obtained, but the couplings did not appear to be complete and difficulties were encountered in proving the structure of the products. The bases m-CH₃SC₆H₄NH₂ and m-CH₃SO₃- $C_{6}H_{4}NH_{2}$, isomeric with those previously employed, have been prepared. These have been diazotized and coupled with R-salt, an intermediate that has been found to give satisfactory contrasts in the ortho and para series. For comparison, analogous dyes have been made from

¹ From the Doctor's Dissertation of G. D. Palmer, 1924.

² Waldron and Reid, THIS JOURNAL, **45**, 2399 (1923). Foster and Reid, *ibid.*, **46**, 1923 (1924).

⁸ Zincke and Müller found difficulties in coupling with a similar compound. *Ber.*, **46**, 780 (1913).

m-toluidine and *m*-anisole. Additional bases m-RC₆H₄NH₂ and m-RSO₂C₆H₄NH₂, in which **R** is ethyl, butyl or benzyl, have been prepared and converted into dyes in order to study the effect of the group joined to the sulfur. A dye has been made from the base m,m'-NH₂C₆H₄S.-SC₆H₄NH₂ since the -S.S- group may be present in some, at least, of the sulfur dyes.

Results

The results are similar to those previously reported: sulfur in the group -SR has a marked bathochromic effect which is lost entirely on oxidation to the sulfone, $-SO_2R$. In fact, the sulfone group is actually hypsochromic. The order of the groups $-CH_3$, $-OCH_3$ and $-SCH_3$ proves to be the same in the *meta* series as in the *para*, but the *meta* dyes resemble the *ortho* in being less intense and distinctive than the *para* dyes.

In the *para* series, the effect of the sulfur is so intense that the alkyl in the —SR makes little difference, but in the *ortho* and *meta* series, where the influence of the sulfur is less pronounced, the differences due to the alkyl groups are more apparent, and there seems to be a sort of periodicity as the molecular weight of the alkyl group increases. In all these series, the dye in which the sulfur carries a methyl group is the furthest toward the red and the deepest in color.

In the case of the sulfone dyes, matters are reversed, the heavier groups seeming to counteract the hypsochromic action of the $-SO_2$ — group, so that the color becomes redder and stronger as we go from methyl to ethyl and to butyl, but when we pass to benzyl a weak buff is obtained.

The effects of the alkyl groups in sulfide and sulfone dyes are shown in the colors as recorded in Table II.

The various amines have been diazotized and coupled with R-salt and 2% dyeings made on woolen skeins. The colors,⁴ as judged by the eye, are given in Table I along with those of the *ortho* and *para* series.

	1 A	BLE 1					
Colors of Dyes Containing the Various Auxochrome Groups							
Group	Ortho	Meta	Para				
CH₃	Deep salmon	Yellowish-scarlet	Scarlet				
—OCH₃	Carmine	Bordeaux	Red				
SCH3	Yellowish-red	Scarlet	Bordeaux				
$-SO_2CH_3$	Orange	Yellowish-orange	Gold				

In their bathochromic power the groups arrange themselves as follows:

Ortho series	$-OCH_3 > -SCH_3 > -CH_3 > -SO_2CH_3$
<i>Meta</i> series	$-SCH_3 > -OCH_3 > -CH_3 > -SO_2CH_3$
Para series	$-SCH_3 > -OCH_3 >CH_3 >SO_2CH_3$

⁴ Thanks to Dr. R. E. Rose, the designations of the colors are from the Technical Laboratory of E. I. du Pont de Nemours and Co.

	ALKYL GROU	PS
Group	Sulfide series	Sulfone series
CH3	Scarlet	Dull yellowish-orange
$-C_2H_5$	Yellowish-scarlet	Salmon
—C₄H9	Yellowish-scarlet	Bright reddish-orange
$-CH_2C_6H_5$	Reddish-buff	Dull buff

TABLE II COLORS OF SULFIDE AND SULFONE DYES OF THE META SERIES CONTAINING VARIOUS

The diazotized diamino-disulfide, $NH_2C_6H_4S.SC_6H_4NH_2$, coupled with R-salt, gave a light pink on wool. This dye was fairly well absorbed by cotton, but the bath was not exhausted.

Experimental Part

1. Alkyl Ethers of *m*-Acetyl-aminothiophenol, *m*-CH₃CONHC₆H₄SR.— As the halogen in *m*-chloronitrobenzene is not reactive, the method used for *o*- and *p*-nitrothiophenols was not available, and a roundabout method had to be employed. Following the method of Zincke and Müller,⁵ the sodium salt of metanilic acid⁶ was acetylated and converted to the sulfonic chloride, *m*-CH₃CONHC₆H₄SO₂Cl. It was found preferable to use three parts of ice instead of ten, and the operation was completed in two hours. During the slow addition of the sulfone chloride to the reduction mixture, the temperature should be brought up to 30°, but not above 45°, except toward the end of the reaction when it may go to 60°. Refluxing, after the final addition of acid, aids the hydrolysis of the acetyl group and cuts down the yield. As the free *m*-acetyl-aminothiophenol is difficult to handle, being oxidized by the air, it is better to convert it to the disulfide which is readily isolated and can be obtained in 70% yield.

The sodium salt of *m*-acetyl-aminothiophenol, $CH_3CONHC_6H_4SNa$, was prepared according to the method of Zincke and Müller, except that a more concentrated alcoholic solution was used. It was not isolated, its solution being used directly for making the alkyl derivatives by the addition of dimethyl sulfate, ethyl iodide, butyl bromide or benzyl chloride. Enough alcohol was added to effect the solution of the added halide. The reactions took place readily and seemed to be complete in about 30 minutes, after which the bulk of the alcohol was evaporated and water added. The alkyl derivatives separated as oils, which were dissolved in ether or benzene. These solutions were dried over calcium chloride and the solvents evaporated. The methyl and benzyl thio-ethers solidified, while the ethyl and butyl remained as oils. The methyl derivative was recrystallized from water and the benzyl from chloroform and petro-

⁵ Zincke and Müller, Ber., 46, 775 (1913).

⁶ We are indebted to E. I. du Pont de Nemours and Co. for the metanilic acid and for assistance in various ways.

leum ether. Both were fine white needles. These acetylaminothioethers are slightly soluble in hot water, moderately soluble in benzene and very soluble in alcohol. None of them could be distilled without decomposition, even at 3 mm. pressure. Details are given in Table III. The methyl derivative had been previously prepared by Zincke and Müller, who gave the melting point as 75° .

		3	CABLE III			
PREPARATION AND	PROPERTIE	S OF	m·ACETYLAM	INO-THI	OPHENOL	ALKYL ETHERS,
		<i>m</i> -CH₃	CONHC6H4S	R		
Alkyl	Disulfide, G.	Halide, G.	Yield G.	1 %	M. p., ° Ĉ.	d_{2b}^{2b}
Methyl	40	26	16	49	75	• • • •
Ethyl	40	28	17.5	50	oil	1.0360
<i>n</i> -Buty1	80	49	51	64	oil	1.0101
Benzyl	60	36	3 6	50	74.1	

2. Alkyl Ethers of *m*-Aminothiophenol, m-NH₂C₆H₄SR.—The hydrochlorides of these were readily prepared by adding concd. hydrochloric acid to the alcoholic solutions of the acetyl derivatives described above, and refluxing for a short time. The solutions were concentrated until the hydrochlorides separated on cooling. These were recrystallized from dil. hydrochloric acid and dried in a vacuum desiccator. The ethyl and benzyl compounds were further recrystallized from alcohol and ether. The methyl compound had been previously prepared by Zincke and Müller. Details are given in Table IV.

TABLE IV

Hydrochlorides of m-Amino-thiophenol Alkyl Ethers, m-NH $_2C_6H_4SR.HC1$, Preparation, Yields, Analyses and Properties

	Acetyl deriv.	v. Yield Chlorine, %				
Alkyi	taken, g.	G.	%	Calcd.	Found	Properties
Methyl	. 6	4	69	• • •		White powder
Ethyl	20	16	82	18.70	18.80	Glistening plate
<i>n</i> -Butyl	20	17	87	16.29	16.47	Fibrous plates
Benzyl	15	14	95	14.08	13.94	Glistening plate

3. m,m'-Diamino-diphenyl-disulfide, $(H_2NC_6H_4S)_2$.—An alcoholic solution of the corresponding diacetyl derivative to which concd. hydrochloric acid had been added was refluxed until hydrolysis was complete. The diamine is readily diazotized and coupled in the usual way.

4. *m*-Acetylaminophenyl Alkyl Sulfones, *m*-CH₃CONHC₆H₄SO₂R.— These were readily obtained by the method of Zincke and Müller⁵ by warming a glacial acetic acid solution of the corresponding sulfides, with the addition of an excess of 30% hydrogen peroxide. The reaction is smooth and gives excellent yields with no sulfoxide.⁷ The benzyl derivative could be precipitated as a solid by diluting the acetic acid solution.

⁷ Hinsberg, Ber., 43, 289 (1910).

The others were obtained by evaporating the acetic acid on the steambath. The solid sulfones were recrystallized from chloroform (in which they are very soluble) and petroleum ether. They are white needles, insoluble in petroleum ether, but soluble in alcohol. The preparation and properties are assembled in Table V. The methyl sulfone was prepared

	TABLE V				
m-Acetylaminophenyl Alk	YL SULFO	NES, m	-CH ₃ CC	NHC ₆ H ₄ S	O₂R
Alkyl	Sulfide taken, g.	G. Y	ield %	М. р.	d_{25}^{25}
Methyl	7	7	85	137	
Ethyl	10	10	86	96	
<i>n</i> -Butyl	20	19	83		1.3727
Benzyl	9	9.5	94	134.2	

5. *m*-Aminophenyl Alkyl Sulfone Hydrochlorides, m-NH₂C₆H₄SO₂R.-HCl.—These were prepared by the method used by Zincke and Müller for the methyl compound by refluxing the acetyl derivatives in alcoholic solutions with the addition of concd. hydrochloric acid. When the solutions were evaporated nearly to dryness, the hydrochlorides of the sulfones separated as yellowish solids which were recrystallized from alcohol and ether, the crystals washed with ether and dried in a vacuum desiccator. They were all shiny, white plates, very soluble in alcohol, but only slightly so in ether.

TABLE VI *m*-AMINO-PHENOL ALKYL SULFONE HYDROCHLORIDES, *m*-NH₂C₆H₄SO₂R.HCl Chlorine, % alcd. Found Yield % Taken, g. G. Calcd. Alkyl 7 Methvl..... 594 Ethyl..... 10 5 5115.9915.59 *n*-Buty1..... 18 105714.2014.059 8.5 96 12.4912.36Benzyl.....

Summary

The influence of sulfur and of the sulfone group on the color of azo dyes has been further studied by preparing the *meta* series of dyes. The bases *m*-NH₂C₆H₄SR and *m*-NH₂C₆H₄SO₂R, in which R is methyl, ethyl, *n*-butyl and benzyl, have been prepared, diazotized and coupled with **R**-salt and the colors compared. The -S- is strongly bathochromic and the $-SO_2-$ hypsochromic, both effects being most pronounced when the alkyl is methyl. For comparison, dyes containing methyl and methoxyl have been made. The groups arrange themselves in the order $-SO_2CH_3 < -CH_3 < -OCH_3 < -SCH_3$ in the *meta* series as in the *para*, but the bathochromic effect of sulfur is not as distinct or as intense in the *meta* as in the *para* position.

BALTIMORE, MARYLAND

by Zincke and Müller.